Forces in colloidal systems and self-assembly

- Why and which forces are important?
- Electrostatic interactions
- van der Waals forces
- Hydrophobic effect
- Depletion forces
- Steric forces
- Self-assembly process
- Introduction in surfactants, self-assembly of surfactants
Why and which forces are important?

Colloids are stabilized by a balance of competing forces, which act:

- to *repel* the colloidal particles

- to *attract* the colloidal particles > aggregation

Interparticle interactions are important.

Why are these interparticle interactions important?
Which forces are important?

- Dynamic balance:
 - gravity
 - thermal motion of colloidal particles
- Example: one particle ($\rho < \rho_{H_2O}$) with radius R is suspended in water.

Arhimeke force

$$F_a = \rho_{H_2O} \left(\frac{4}{3} \pi R^3 \right) g$$

Gravity force

$$G = m_p g = \rho \left(\frac{4}{3} \pi R^3 \right) g$$

Stockes force

$$F_s = 6\pi \eta R v$$

$$\Delta \rho = \rho_{H_2O} - \rho$$

Stockes force

$$F_s = 6\pi \eta R v$$

\[\eta \] viscosity

\[v \] velocity of the particle
Which forces are important?

- Example: one particle (\(\rho < \rho_{H_2O} \)) with radius R is suspended in water.

Sedimentation velocity of the particle:

\[
F_s = F \\
\nu = \frac{2R^2 \Delta \rho g}{9 \eta}
\]

\(\nu < \nu_B \) Colloidal particles remain in solution

\(\nu > \nu_B \) Colloidal particles sediment

Difusion coefficient of a particle, D

\[
D = \frac{k_B T}{6\pi \eta R} \\
\nu = \left(\frac{4}{3}\pi R^3\right) \frac{D \Delta \rho g}{k_B T}
\]
Do you know that…?

- 26°C is the minimal temperature for life

- The molecules have a $T = -173^\circ C$ (100K) in the external region of the Horse Nebula, and -258°C (15K) in its core.

- T inside the core of the Sun is $+15.7$ milions of °C. T at the external region of the Sun is $5800^\circ C$.
Intermolecular/interparticle forces

- Intermolecular/interparticle forces are expressed by the potential energy:

\[F(r) = -\frac{dV(r)}{dr} \]

- **Attractive** forces: -
- **Repulsive** forces: +

- Importance of the intermolecular/interparticle forces

Interfacial tension
Electrostatic forces between molecules

- The elements of a soft phase are charged (particles, surface) → the distribution of charges can lead to *assembly* in solution.

- **Example:** 2 oppositely charged particles \((q_1, q_2)\) are interacting due to the Coulomb force, \(F_c\):

\[
F_c = \frac{q_1 q_2}{4 \pi \varepsilon_0 r^2}
\]

Coulomb force (charges in *vacuum*)

Coulomb force (charges in a *medium*)

\[
F_c = \frac{q_1 q_2}{4 \pi \varepsilon_0 \varepsilon r^2}
\]

\[
\varepsilon = \frac{\varepsilon_{\text{material}}}{\varepsilon_0}
\]

- \(\varepsilon_0\) Permittivity of vacuum
- \(r\) Distance between charges
- \(\varepsilon\) Relative permittivity
- \(\varepsilon_{\text{medium}}\) Permittivity in medium
Electrostatic forces between molecules

- Coulomb force is related to the potential energy:

\[V(r) = \frac{q_1q_2}{4\pi\varepsilon_0 r} = \frac{z_1z_2e^2}{4\pi\varepsilon_0 r} \]

- Coulomb forces are long range forces.

\[F_c \gg F_{vdW} \]

\[F_c = 100 - 600 \text{ kJ/mol} \]

\[F_{vdW} < 1 \text{ kJ/mol} \]

\[F_{H-bonds} = 10 - 40 \text{ kJ/mol} \]

- Coulomb forces represent the basis of the electrostatic repulsive forces between colloidal particles > disperse the particles
Electrostatic forces between molecules

- Example: 2 ions, Cl\(^+\) and Na\(^-\) in contact (\(r = 0.276\, \text{nm}\)), in vacuum and in water:

 a) vacuum: \(V_{1,2} = -8.36 \cdot 10^{-19} \, \text{J} \)

 b) water: \(V_{1,2} = -0.106 \cdot 10^{-19} \, \text{J} \)

\(\text{NaCl} \) dissociates in water

- Comparison between Coulomb potential energy and thermal energy (300K):

\[k_B T = 4.1 \cdot 10^{-21} \, \text{J} \quad \Rightarrow \quad V_{1,2} \approx 203k_B T \]

\(V_{1,2} < k_B T \)

Coulomb forces are strong forces

\(r > 56 \, \text{nm} \)
Electrostatic interaction between an ion and a dipole

- Potential energy of the electrostatic interaction between an ion and a polar molecule (dipole)
 a) vacuum:
\[V(r) = \frac{q_1 \mu_2 \cos \theta}{4\pi\varepsilon_0 r^2} \]

b) medium:
\[V(r) = \frac{q_1 \mu_2 \cos \theta}{4\pi\varepsilon_0 \varepsilon r^2} \]

- In colloidal systems: the sum of all Coulomb interactions between the ion and each dipole.
Electrostatic Interaction Energies Between Molecules in the Gas Phase

<table>
<thead>
<tr>
<th>n</th>
<th>Name</th>
<th>Interaction Energy</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Coulomb ion–ion</td>
<td>$\frac{q_1 q_2}{4\pi \varepsilon_0 R_{12}}$</td>
<td>See Figure 3.1</td>
</tr>
<tr>
<td></td>
<td>Ion–dipole</td>
<td>$\frac{q_1 m_2 \cos \theta}{4\pi \varepsilon_0 R_{12}^3}$</td>
<td>See Figure 3.2</td>
</tr>
<tr>
<td></td>
<td>Dipole–dipole</td>
<td>$\frac{-m_1 m_2 f(\theta, \phi)}{4\pi \varepsilon_0 R_{12}^3}$</td>
<td>$f(\theta, \phi) = 2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos(\phi_2 - \phi_1)$ See Figure 3.3</td>
</tr>
<tr>
<td></td>
<td>Ion-induced dipole</td>
<td>$\frac{-\alpha q_1^2}{2(4\pi \varepsilon_0)^2 R_{12}^4}$</td>
<td>Attractive</td>
</tr>
<tr>
<td></td>
<td>Dipole-induced dipole (Debye)</td>
<td>$\frac{-m_1^2 \alpha (1 + 3 \cos^2 \theta)}{2(4\pi \varepsilon_0)^2 R_{12}^6}$</td>
<td>Attractive</td>
</tr>
<tr>
<td></td>
<td>Thermally averaged dipole–dipole (Keesom)</td>
<td>$\frac{-2m_1^2 m_2^2}{3(4\pi \varepsilon_0)^2 kT R_{12}^6}$</td>
<td>Attractive</td>
</tr>
</tbody>
</table>
Electrostastic induced interactions

- **ion** - induced dipole (μ)
- **dipol** - induced dipole (μ)

- Polarizability of an atom α:

$$\mu_{ind} = \varepsilon E$$

Example: $H_2O \quad \alpha / \varepsilon_0 = 1.86 \cdot 10^{-29} \text{ m}^3$
Electrostatic induced interactions

- Electrostatic interactions: ion-ion → STRONG

 Electrolytes

 Charged colloidal solutions

- How to treat colloidal systems? The full description never solved !!!

- Most distances \gg molecular size \rightarrow AVERAGE
Van der Waals forces

- between molecules: rather short range

- Potential energy:
 \[V_{12} = -\frac{C}{r^6} = -\frac{C^{\text{disp}} + C^p + C^{\text{ind}}}{r^6} \]

 - London:
 \[V_{12} = -\frac{C^{\text{disp}}}{r^6} = -\frac{3}{2} \frac{\alpha_{01} \alpha_{02}}{(4\pi \varepsilon_0)^2} \left(\frac{I_1 I_2}{I_1 + I_2} \right) \]

 - Kesson:
 \[V_{12} = -\frac{C^p}{r^6} = -\frac{1}{3} \frac{\mu_1^2 \mu_2^2}{k_B T (4\pi \varepsilon_0)^2} \]

 - Debye:
 \[V_{12} = -\frac{C^{\text{ind}}}{r^6} = -\frac{\alpha_{01} \mu_1^2 + \alpha_{02} \mu_2^2}{(4\pi \varepsilon_0)^2} \]
Van der Waals forces

Other forces:
- **Quadrupol** forces: not important for Colloid & Surface
- **Repulsive** forces:
 \[V^{rep} = -\frac{C}{r^n} \quad n \in [8-16] \]

Van der Waals forces:
- **Size & Shape** to be taken into account
- Potential Energy integrate van der Waals forces over shape & particles geometry & surface.
 \[V_A(H) \]
 \[H \rightarrow \text{distance (notation)} \]
Table 2.2 Van der Waals interaction (potential) energies between particles/surfaces; V_A is the potential energy (in [J/m2] for the interaction between two surfaces), H is the interparticle/intersurface distance and R is the radius (for spherical particles); A is the Hamaker constant (see Equations 2.6–2.8 and Hamaker, 1937) and, depending on the application, is evaluated under conditions of either vacuum/air or a dielectric (i.e. a liquid medium, in which case an effective Hamaker constant must be used). C is defined in Equation 2.6 and ρ is the number density (molecules/volume).

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Expression for the potential energy $V_A (H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface-molecule</td>
<td>$V_A = -\frac{\pi C \rho}{6H^3}$</td>
</tr>
<tr>
<td>Two equal-sized spheres ($H \ll R$)</td>
<td>$V_A = -\frac{AR}{12H}$</td>
</tr>
<tr>
<td>Two equal-sized spheres, valid at all distances</td>
<td>$V_A = -\frac{AR}{12H} \left[\frac{4R}{(H+4R)} + \frac{4RH}{(2R+H)^2} + \frac{2H}{R} \ln \left(\frac{H(H+4R)}{(2R+H)^2} \right) \right]$</td>
</tr>
<tr>
<td>Two unequal-size spheres (radii R_1 and R_2) ($H \ll R_1$, R_2)</td>
<td>$V_A = -\frac{A}{6H} \left(\frac{R_1 R_2}{R_1 + R_2} \right)$</td>
</tr>
<tr>
<td>Two spherical particles of unequal/equal radii, valid at all separations. In the equation, use $r = R_1 + R_2 + H$.</td>
<td>$V_A = -\frac{A}{6} \left[\frac{2R_1 R_2}{r^2 - (R_1 + R_2)^2} + \frac{2R_1 R_2}{r^2 - (R_1 - R_2)^2} \right]$</td>
</tr>
<tr>
<td>Two flat plates/surfaces of “infinite” thickness (per unit area, J m$^{-2}$)</td>
<td>$V_A = -\frac{A}{12 \pi H^2}$</td>
</tr>
<tr>
<td>Two flat plates/surfaces per unit area of surface (J m$^{-2}$) (finite thickness t)</td>
<td>$V_A = -\frac{A}{12 \pi} \left[\frac{1}{t^2} + \frac{1}{(H+2t)^2} - \frac{2}{(H+t)^2} \right]$</td>
</tr>
<tr>
<td>Two parallel cylinders with radii R_1 and R_2 ($H \ll R_1$, R_2) (per unit length, J m$^{-1}$)</td>
<td>$V_A = -\frac{A}{12 \sqrt{2} H^{3/2}} \left(\frac{R_1 R_2}{R_1 + R_2} \right)^{1/2}$</td>
</tr>
<tr>
<td>Cylinder–cylinder (crossed at 90°) interactions (radii R_1, R_2, respectively)</td>
<td>$V_A = -\frac{A}{6H} \sqrt{R_1 R_2}$</td>
</tr>
<tr>
<td>Sphere or macromolecule of radius R near a flat surface ($H \ll R$)</td>
<td>$V_A = -\frac{AR}{6H}$</td>
</tr>
<tr>
<td>Cylinder of radius R near and parallel with a flat surface (per unit length, J m$^{-1}$) ($H < R$)</td>
<td>$V_A = -\frac{A\sqrt{R}}{12 \sqrt{2} H^{3/2}}$</td>
</tr>
</tbody>
</table>
Van der Waals forces

- The previous formulas: particles $R > 0.5 \text{ nm}$

- **Hamaker** constant $\to f(C)$

$$ A = \pi \rho^2 C \quad \text{with} \quad C = \text{London coefficient} $$

Other medium $\to A_{\text{eff}}$

Example: H_2O - particles 1,3 & medium 2

$$ A_{123} = \left(\sqrt{A_{11}} - \sqrt{A_{22}}\right)\left(\sqrt{A_{33}} - \sqrt{A_{22}}\right) \quad 1 = 3 $$

$$ A_{121} = \left(\sqrt{A_{11}} - \sqrt{A_{22}}\right)^2 $$
Van der Waals forces

- Total interaction: \[\sum \text{(interactions - pairs } ij, \text{ central potential)} \]

- **Lifshitz theory**: more appropriate

\[A_{123} = A_{\nu=0} + A_{\nu>0} \]

\[
A_{\nu=0} = \frac{3k_B T}{4} \left(\frac{\epsilon_1 - \epsilon_3}{\epsilon_1 + \epsilon_3} \right) \left(\frac{\epsilon_2 - \epsilon_3}{\epsilon_2 + \epsilon_3} \right)
\]

\[n_i = \text{refractive index of particle } i \]

\[
A_{\nu>0} = \frac{3h \nu_e}{8\sqrt{2}} \frac{\left(n_1^2 - n_3^2 \right) \left(n_2^2 - n_3^2 \right)}{\sqrt{\left(n_1^2 + n_3^2 \right) \left(n_2^2 + n_3^2 \right) \left[\sqrt{\left(n_1^2 + n_3^2 \right)} + \sqrt{\left(n_2^2 + n_3^2 \right)} \right]}}
\]
Van der Waals forces

- **Lifshitz:**
 - **Case:** particle 1 = particle 3

\[
A_{121} = \frac{3k_B T}{4} \left(\frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \right)^2 + \frac{3\hbar \nu_e}{16\sqrt{2}} \left(\frac{n_1^2 - n_2^2}{n_1^2 + n_2^2} \right)^{3/2}
\]

- **Case:**
 - Medium 2 = vacuum (air) \(\rightarrow\) \(\varepsilon_2 = 1\), \(n_2 = 1\)

\[
A_{121} = \frac{3k_B T}{4} \left(\frac{\varepsilon_1 - 1}{\varepsilon_1 + 1} \right)^2 + \frac{3\hbar \nu_e}{16\sqrt{2}} \left(\frac{n_1^2 - 1}{n_1^2 + 1} \right)^{3/2}
\]
- Smooth $f(n_i)$ for a large number of compounds: acetone, ethanol, polymers, H_2O, ceramics, etc.
- No trend $f(\varepsilon_i)$

Lifshitz formula → Nanoparticles & medium = continuous phases.
Van der Waals forces

- **Estimate the Hamaker constant in other media:**
 - Hamaker constant of water: \(A_{22} = 3.7 \cdot 10^{-20} J \)

 - **Example:** Polystyrene in water: \(A_{11} = 7.0 \cdot 10^{-20} J \) \(\text{Exp: } (6.1 + 7.9)/2 = 7.0 \)

 \[
 A_{121} = \left(\sqrt{7.0 \cdot 10^{-20}} - \sqrt{3.7 \cdot 10^{-20}} \right)^2 = 0.52 \cdot 10^{-20} J
 \]

 - **Example:** \(Al \) nanoparticles in water: \(A_{11} = 14.0 \cdot 10^{-20} J \)

 \[
 A_{121} = \left(\sqrt{14.0 \cdot 10^{-20}} - \sqrt{3.7 \cdot 10^{-20}} \right)^2 = 3.31 \cdot 10^{-20} J
 \]

 - **Example:** \(Zr \) nanoparticles in water: \(A_{11} = 17.0 \cdot 10^{-20} J \)

 \[
 A_{121} = \left(\sqrt{17.0 \cdot 10^{-20}} - \sqrt{3.7 \cdot 10^{-20}} \right)^2 = 4.83 \cdot 10^{-20} J
 \]
Van der Waals forces

- **Estimate the Hamaker constant** when we know another constants:

- **Example**: Octane in water:

 - Hamaker constant of water: $A_{22} = 3.7 \cdot 10^{-20} J$

 - Octane in air (vacuum) $\rightarrow \epsilon_2 = 1.90$, $n_2 = 1.39$

 - $\nu_e = 3 \cdot 10^{15}$ Hz

 $$A_{11} = \frac{3k_B T}{4} \left(\frac{\epsilon_1 - 1}{\epsilon_1 + 1} \right)^2 + \frac{3h \nu_e}{16\sqrt{2}} \left(\frac{n_1^2 - 1}{n_1^2 + 1} \right)^{3/2}$$

 $$A_{11} = \frac{3 \cdot 1.38 \cdot 10^{-23} \cdot 300}{4} \left(\frac{0.9}{2.9} \right)^2 + \frac{3 \cdot 6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{15}}{16\sqrt{2}} \frac{0.93^2}{2.93^{3/2}} = 4.57 \cdot 10^{-20} J$$

 $$A_{121} = \left(\sqrt{4.57 \cdot 10^{-20}} - \sqrt{3.7 \cdot 10^{-20}} \right)^2 = 0.045 \cdot 10^{-20} J$$

 $$A_{121} = 0.36 \cdot 10^{-20} J \quad \text{← Hamaker const (Lifshitz theory)}$$

 - Experimental:

 $$A_{121} = 0.41 \cdot 10^{-20} J$$
Refractive Indices / Permittivities

Table 121. Refractive Indices for Wavelengths Corresponding to Selected Fraunhofer Lines

<table>
<thead>
<tr>
<th>Fraunhofer Line</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength, nm</td>
<td>759</td>
<td>687</td>
<td>589</td>
<td>486</td>
<td>397</td>
</tr>
<tr>
<td>Carbon disulphide</td>
<td>1.610</td>
<td>1.617</td>
<td>1.629</td>
<td>1.654</td>
<td>1.702</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>1.339</td>
<td>1.360</td>
<td>1.363</td>
<td>1.367</td>
<td>1.374</td>
</tr>
<tr>
<td>Glass (light crown)</td>
<td>1.510</td>
<td>1.512</td>
<td>1.545</td>
<td>1.521</td>
<td>1.531</td>
</tr>
<tr>
<td>Water</td>
<td>1.332</td>
<td>1.331</td>
<td>1.333</td>
<td>1.337</td>
<td>1.344</td>
</tr>
</tbody>
</table>

Table 122. Refractive Indices of Selected Gases

<table>
<thead>
<tr>
<th>Gas or vapour</th>
<th>(n-1)×10⁻⁴</th>
<th>Gas or vapour</th>
<th>(n-1)×10⁻⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>0.06</td>
<td>Hydrogen sul-</td>
<td>6.19</td>
</tr>
<tr>
<td>Air</td>
<td>2.92</td>
<td>phide</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>3.77</td>
<td>Mercury</td>
<td>9.33</td>
</tr>
<tr>
<td>Benzene</td>
<td>7.48</td>
<td>Methane</td>
<td>4.31</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>4.50</td>
<td>Nitrogen</td>
<td>2.87</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>17.63</td>
<td>Selenium</td>
<td>8.95</td>
</tr>
<tr>
<td>Chloroform</td>
<td>14.55</td>
<td>Sulphur dioxide</td>
<td>7.37</td>
</tr>
<tr>
<td>Helium</td>
<td>0.35</td>
<td>Tellurium</td>
<td>9.91</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1.38</td>
<td>Water vapour</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc</td>
<td>20.50</td>
</tr>
</tbody>
</table>

Note. The values of the refractive indices in the table are for a wavelength corresponding to the yellow line of sodium (D) and have been reduced to a density corresponding to 0°C and standard pressure (101.325 kPa) using the relationship (n - 1)/ρ = const (for a given gas).

Table 74. Permittivities of Selected Pure Liquids

<table>
<thead>
<tr>
<th>Substrate</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>23.3</td>
<td>22.5</td>
<td>21.4</td>
<td>20.9</td>
<td>20.5</td>
<td>19.5</td>
<td>18.7</td>
</tr>
<tr>
<td>Benzene</td>
<td>-</td>
<td>2.30</td>
<td>2.29</td>
<td>2.27</td>
<td>2.26</td>
<td>2.25</td>
<td>2.22</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>-</td>
<td>2.31</td>
<td>2.30</td>
<td>-</td>
<td>2.20</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>27.88</td>
<td>25.41</td>
<td>23.08</td>
<td>21.25</td>
<td>23.52</td>
<td>22.16</td>
<td>20.87</td>
</tr>
<tr>
<td>Ethyl ether</td>
<td>8.50</td>
<td>4.58</td>
<td>4.38</td>
<td>4.27</td>
<td>4.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycerin</td>
<td>-</td>
<td>-56.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kerosene</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water</td>
<td>87.63</td>
<td>83.86</td>
<td>80.08</td>
<td>78.25</td>
<td>76.47</td>
<td>74.47</td>
<td>72.06</td>
</tr>
</tbody>
</table>

Note. Small amounts of impurities have a negligible effect on the value of the permittivity.
Importance of the van der Waals forces

- **dispersion** forces → universal
- **polar** & **induction** forces → \(f(\text{material}) \)

 only polar forces = \(f(T) \)

- Dispersion forces → **additive**: \(\sum \) (attraction - pairs \(ij \))

 \[\text{Dominate} \rightarrow \text{nanoparticles & surfaces} \]

- Example:
 - van der Waals between **molecules**: \(V_{12} = -\frac{C^{\text{disp}}}{r^6} \)
 - van der Waals between **nanoparticles**: \(H \ll R \)

 \[V_{1,2} = -\frac{AR}{12H} \]
Importance of the van der Waals forces

- van der Waals forces between particles:
 → **attractive**: - medium is vacuum, air
 - molecules / nanoparticles: identical
 → **repulsive**: - molecules / nanoparticles: different in a 3rd medium

\[n_3 \in (n_1, n_2) \]

predict immiscibility in polymer blends

- van der Waals forces: decrease in a medium different from vacuum/air
- van der Waals forces \rightarrow theory of colloids **stability**
Importance of the van der Waals forces

Example: relative importance of polar/dispersion forces – $H_2O \leftrightarrow$ alkanes:

$-H_2O \leftrightarrow$ methan $\rightarrow \quad \varepsilon_{water} = 80, \ n_{water} = 1.33$

$\quad \varepsilon_{methan} = 2, \ n_{methan} = 1.30$

2 molecules (methan) \rightarrow polar forces have the **major** contribution
Importance of the van der Waals forces

- electrostatic quantum field theory (McLachlan)

\[V_{v=0} = -\frac{3k_B T}{r^6} R_1^3 R_2^3 \left(\frac{\varepsilon_1 - \varepsilon_3}{\varepsilon_1 + 2\varepsilon_3} \right) \left(\frac{\varepsilon_2 - \varepsilon_3}{\varepsilon_2 + 2\varepsilon_3} \right) \]

\[V_{v>0} = -\frac{\sqrt{3} h \nu_e R_1^3 R_2^3}{2r^6} \frac{(n_1^2 - n_3^2)(n_2^2 - n_3^2)}{\sqrt{(n_1^2 + 2n_3^2)(n_2^2 + 2n_3^2)}} \left[\sqrt{n_1^2 + 2n_3^2} + \sqrt{n_2^2 + 2n_3^2} \right] \]

- Example: \(H_2O \leftrightarrow \text{methan} \)

\[V_{v>0} = -\frac{\sqrt{3} h \nu_e R_1^3 R_2^3}{2r^6} \frac{(-0.08)(-0.08)}{\sqrt{(5.23)(5.23)}} \left[\sqrt{(5.23)} + \sqrt{(5.23)} \right] = -\frac{\sqrt{3} h \nu_e R_1^3 R_2^3}{2r^6} \cdot 0.000267 \]

\[V_{v=0} \gg V_{v>0} \Rightarrow V = V_{v=0} + V_{v>0} \approx V_{v=0} \]
Importance of the van der Waals forces

- van der Waals dispersion forces → London interaction
- derived from quantum mechanics: attractive

- correlation between e^- → instantaneous dipoles

- dipole-dipole interaction

→ dispersion interaction: ⇒ cohesion in liquids & solids

approximation: $\sum (\text{pairs } ij \text{ of molecules})$

$\neq f(T)$
Importance of the van der Waals forces

Table 5.1

| Material | M|Air|M | M|Water|M | M|Water|Air | M|Air|Water |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Water | 3.7 | 0.0 | 0.0 | 3.7 | | | | | | | |
| Alkanes | | | | | | | | | | | |
| $n = 5$ | 3.8 | 0.3 | 0.15 | 3.6 | | | | | | | |
| $n = 6$ | 4.1 | 0.4 | 0.0 | 3.8 | | | | | | | |
| $n = 10$ | 4.8 | 0.5 | -0.3 | 4.1 | | | | | | | |
| $n = 14$ | 5.1 | 0.5 | -0.5 | 4.2 | | | | | | | |
| $n = 16$ | 5.2 | 0.5 | -0.5 | 4.3 | | | | | | | |
| Fused quartz | 6.5 | 0.8 | -1.0 | 4.8 | | | | | | | |
| Fused silica | 6.6 | 0.8 | -1.0 | 4.8 | | | | | | | |
| Sapphire | 16.0 | 5.0 | -3.8 | 7.4 | | | | | | | |
| Polymethyl methacrylate | 7.1 | 1.1 | -1.3 | 5.0 | | | | | | | |
| Polystyrene | 6.6 | 1.0 | -1.1 | 4.8 | | | | | | | |
| Polyisoprene | 6.0 | 0.7 | -0.8 | 4.6 | | | | | | | |
| Polytetrafluoroethylene | 3.8 | 0.3 | 0.1 | 3.7 | | | | | | | |
| Mica (green) | 10.0 | 2.1 | | | | | | | | | |
Hydrogen bonds & Hydrophobic Effect

- H bonds $\rightarrow H \leftrightarrow F, O, N$ atoms \rightarrow Lewis acid – Lewis base interactions
 \rightarrow when present: dominate the properties

Example: Ethanol $\rightarrow T_{boiling} = 79^\circ C$
Isomeric dimethylether $\rightarrow T_{boiling} = -25^\circ C$

- H bonds \gg van der Waals interactions
 $\rightarrow (8 - 40) \text{ kJ/mol} \ll$ covalent interactions: $(150 - 900) \text{ KJ/mol}$
 \rightarrow electrostatic attraction: $O^- \leftrightarrow H^+$
Hydrogen bonds & Hydrophobic Effect

$H_2O \rightarrow \text{dipol}$

- Hydrophyllic molecule: polar molecule \rightarrow H bonds with H_2O
- Hydrophobic molecule: nonpolar molecule \rightarrow NO H bonds with H_2O

H_2O - form a „cage-like“ structure

Entropically unfavorable
Hydrogen bonds & Hydrophobic Effect

- decrease local entropy

- give energy → incorporate a hydrophobic molecule in a H_2O solution

- Hydrophobic surface
Hydrogen bonds & Hydrophobic Effect

Amphiphilic \rightarrow **Hydrophobic** + **Hydrophilic**
Hydrogen bonds & Hydrophobic Effect

Hydrophobic effect → H_2O molecules: connected with H bounds

non-polar molecules added

more structured cavities

Example: H_2O → $T_{boiling} = 100 \, ^{\circ}C$

$(3 \text{-} 3.5 \text{ H bound/molecule})$

CH_4 → $T_{boiling} = -167 \, ^{\circ}C$

H_2O + alcanes \rightarrow S decreases \rightarrow $\Delta G > 0$
Hydrogen bonds & Hydrophobic Effect

Hydrophobic interaction = strong attraction forces between non-polar molecules and surfaces in water

Depends on the size of the hydrophobic clusters
Hydrogen bonds & Hydrophobic Effect

\[T \text{ increase} \Rightarrow \text{Hydrophobic forces increase} \]

Induce order in the \(H_2O \) molecule arrangement

\(\text{Hydrophobic forces} \rightarrow \) entropic \(\Rightarrow \) decrease \(S \)

Near a small hydrophobic unit

- only remainants of a clathrate structure of \(H_2O \) molecules
Hydration of small / large hydrophobic solutes

Hydrophobic solutes \Rightarrow “cavities” in H_2O : do not exists H bounds.

Van der Waals interactions

Affect the position of an interface between H_2O molecules & solute units

Strong attractive forces (hydrophilic) \rightarrow amphiphilic nature

Affect the arrangement of the assemblies relative to interface
Hydration of small hydrophobic units

Each H_2O molecule \rightarrow 4 H bounds

$d < 0.5 \text{ nm}$

Do not break the H bounds of H_2O
Hydration of small hydrophobic units

\[\Delta G \rightarrow W \text{ reversible for the solvent to reorganize and solvate the solute molecule} \]

\[P \approx e^{\frac{ \Delta G }{ k_B T }} \]

\[\Delta G = \Delta H - T \Delta S \]

H bonds breaking \(\rightarrow \Delta H \) is dominant: \(\frac{\Delta G}{T} \) decrease when \(T \) increase

\(\Delta S > 0 \Rightarrow \text{High } T \ (25 \degree C) \)

\(H_2O \) arrangements \(\rightarrow \Delta S \) is dominant: (\(\Delta S < 0 \)) \(\rightarrow \Delta G \) increase when \(T \) increase
Hydration of big hydrophobic units

The solute \textbf{surface} → extent with \textit{low curvature} for $A \gg 1 \text{ nm}^2$

H bonds of H_2O molecules → broken → each $H_2O : 3 \text{ H bonds}$

H_2O molecules tends to move away

H_2O \textbf{interface} around the hydrophobic units → simular to interface between \textit{liquid - vapour}

Hydration of big hydrophobic units

\[\Delta G \approx 4\pi R^2 \gamma + \frac{4}{3} \pi R^3 p \approx 4\pi R^2 \gamma \]

The H\textsubscript{2}O interface $\rightarrow \Delta G \sim$ surface area

\[\Delta G = f(R) \]

H bonds breaking $\rightarrow \Delta H$ is dominant:

$\Delta G/T$ decrease when T increase

Small Hydrophobic unit: $\Delta G \approx \frac{4}{3} \pi R^3$

Big Hydrophobic unit: $\Delta G \approx R^2$
Depletion forces

Solution of *big colloidal* particles → add *small nanoparticles*

The *big particles* are aggregating

Net force → *isotropic* (from all directions)

Depletion forces → Effect of *small nanoparticles* added to a solution of *big particles*

Origin of depletion attraction: *thermal motion* of small molecules
Depletion forces

big colloidal particles → random movement

can approach each other

\[d \approx 2r \]

small particles do **not enter between** big particles

Depletion forces \(\rightarrow\) **Net force \rightarrow anisotropic**
Depletion forces

Depletion forces → do not determine permanent aggregates

change of solution conditions

redispersion

Adding a polymer → aggregation of big particles

\[d \approx 2R_g \]

\[R_g = f(T) \rightarrow \Delta T \text{ can be used to control the dispersion} \]
Depletion forces

Polymer \rightarrow **change conformation** in a confined space \rightarrow chain of «blobs»

The size of polymer \rightarrow the range of depletion

Example: PEG \rightarrow fusion of biological cells
Depletion forces

- \(F_{depl} = f(z) \) → depends on the concentration profile

- polymers → density peak outside the depletion zone

- oscillations in the solute concentration
Steric repulsion

Modify the **particle surface** → control the force between particles

Steric modification

Entropic energy barrier → **Brush** configuration

„Interlocked“ chains → **Lower number of configurations**

S decrease

Interlocking ≅ packing
Steric repulsion

Example: PEG \rightarrow brushes

Do not allow protein adsorption

Range repulsion forces \rightarrow greater than van der Waals forces

Repulsive forces \rightarrow greater difficulty of packing connected objects
Assembly in colloidal systems

Attractive & repulsive forces

Spontaneous assembly of particles

Assembly process

Phase thermodynamically stable
Diffusive process → structure aggregation
Assembly in colloidal systems

Self assembly = f (how particles come together)

Process of association \rightarrow aggregates

Small clusters \rightarrow diffuse at: $v = f(\text{size})$ [Stokes-Einstein]

$D = \frac{k_B T}{6\pi \eta R}$

Small clusters \rightarrow grow in size \rightarrow aggregate
Assembly in colloidal systems

Particles do not interact \(\rightarrow\) high dissociation rate

Particles interact \(\rightarrow\) stick permanently

- Reaction-limited aggregation

\[
\text{Probability to } \textit{stick together} + \text{Probability of } \textit{dissociation}
\]

Dispersed particles are randomly added \(\rightarrow\) cluster growths

Inside the cluster volume \(\rightarrow\) vacancies \(\rightarrow\) fractal structure
Assembly in colloidal systems

- **Reaction-limited aggregation**
 - Fairly dense

- **Diffusion-limited aggregation**
 - High fraction of free space
 - *Open cluster structure* → particle coming from outside cannot fill any interior gap

- **Cluster-cluster aggregation** → small clusters → large clusters
Assembly in colloidal systems

Example: flocculation process of water purification

Small impurities → not filtered

Addition of flocculants (charged particles)

Particles + impurities → clusters → can be filtered
Assembly of big hydrophobic particles in H_2O

Big hydrophobic particles → cluster in H_2O

$\Delta G = f(R)$

- n particles solvated separately (one at a time) → overall solvation ΔG → linear

Linear $\rightarrow f(\text{excluded volume of hydrophobic particles})$

$\Delta G \approx n\Delta G_i$

- n particles → hydrophobic unit

cluster in $H_2O \rightarrow \Delta G \sim \text{surface area}$
Assembly of big hydrophobic particles in H_2O

ΔG for assembling → cluster in H_2O

- n particles high → big cluster

$\Delta G < n\Delta G_i$ → favour cluster formation

$\Delta G_{assembly} \sim \Delta G_{particles} - \Delta G_{cluster}$

Reality

$\Delta G \approx 4\pi R^2 \gamma + \frac{4}{3} \pi R^3 \rho \approx 4\pi R^2 \gamma$
Assembly of amphiphilic particles → surfactants

Strong interactions between *hydrophilic molecules* $\leftrightarrow H_2O$

- Limit fluctuations

- Partially stabilized by *hydrophobic* forces

Amphiphilic molecules

- Small molecular weight: *surfactants, lipids*
- Big molecular weight: *polymer, proteins*
Assembly of amphiphilic particles \rightarrow surfactants

Self assembly process

\[f(\text{concentration amphiphilic molec}) \]

\textbf{supramolecular} assemblies

different \textbf{shapes}
Surfactants

Surfactant - molecule that localize at the **interface** between:
- 2 *immiscible* fluids
- liquid-air surface

![Chemical structures of various surfactants](image)
Forces in colloidal systems and self-assembly

- Why and which forces are important?
- Electrostatic interactions
- van der Waals forces
- Hydrophobic effect
- Depletion forces
- Steric forces
- Self-assembly process
- Introduction in surfactants, self-assembly of surfactants